LUBS2095
Module Reading List
Danat Valizade
d.valizade@leeds.ac.uk
Tutor information is taken from the Module Catalogue
Principles of machine learning
Breiman, L., 2001. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical science, 16(3), pp.199-231.
Bzdok, D., N. Altman and M. Krzywinski, M., 2018. Statistics versus machine learning, Nature methods, 15(4), p.233.
Easterby-Smith, M., Jaspersen, L.J., Thorpe, R. and Valizade, D., 2021. Management and business research (Chapter 11, pp. 387-413). Sage.
McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D.J. and Barton, D., 2012. Big data: the management revolution. Harvard business review, 90(10), pp.60-68.
Time series forecasting
ARIMA using Python - https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/
Chen, P., Yuan, H. and Shu, X., 2008, October. Forecasting crime using the arima model. In 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery (Vol. 5, pp. 627-630). IEEE.
Sezer, O.B., Gudelek, M.U. and Ozbayoglu, A.M., 2020. Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied Soft Computing, 90, p.106181.
Ensemble methods
Breiman, L., 2001. Random forests. Machine learning, 45(1), pp.5-32.
Interpretable machine learning
Molnar, C., 2020. Interpretable Machine Learning https://christophm.github.io/interpretable-ml-book/
Natural language processing
Chowdhury, G.G., 2003. Natural language processing. Annual review of information science and technology, 37(1), pp.51-89.
Hirschberg, J. and Manning, C.D., 2015. Advances in natural language processing. Science, 349(6245), pp.261-266.
Nadkarni, P.M., Ohno-Machado, L. and Chapman, W.W., 2011. Natural language processing: an introduction. Journal of the American Medical Informatics Association, 18(5), pp.544-551.
Neural networks
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444
Graupe, D. (2013). Principles of artificial neural networks (Vol. 7). World Scientific.
Machine learning in Python
Géron, A., 2019. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media.
Raschka, S., 2015. Python machine learning. Packt publishing ltd.
Python libraries
https://scikit-learn.org/stable/
This list was last updated on 21/01/2022