Skip to main content

SOEE3790
Module Reading List

Advanced Environmental Science Field and Research Skills, 2021/22, Semester 1
Dr Ruza Ivanovic
r.ivanovic@leeds.ac.uk
Tutor information is taken from the Module Catalogue

Bell, S., Cornford, D., & Bastin, L. (2013). The state of automated amateur weather observations.  Weather, 68(2), 36–41. https://doi.org/10.1002/wea.1980 

Bell, S., Cornford, D., & Bastin, L. (2015). How good are citizen weather stations? Addressing a biased opinion.  Weather, 70(3), 75–84. https://doi.org/10.1002/wea.2316 

Chapman, L., Bell, C., & Bell, S. (2017). Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using Netatmo weather stations. International Journal of Climatology, 37(9), 3597–3605. https://doi.org/10.1002/joc.4940 

Chapman, L., Muller, C. L., Young, D. T., Warren, E. L., Grimmond, C. S. B., Cai, X. M., & Ferranti, E. J. S. (2015). The Birmingham urban climate laboratory: An open meteorological testbed and challenges of the Smart City. Bulletin of the American Meteorological Society, 96(9), 1545–1560. https://doi.org/10.1175/BAMS-D-13-00193.1 

 Feichtinger, M., de Wit, R., Goldenits, G., Kolejka, T., Hollósi, B., Žuvela-Aloise, M., & Feigl, J. (2020). Case-study of neighbourhood-scale summertime urban air temperature for the City of Vienna using crowd-sourced data. Urban Climate, 32. https://doi.org/10.1016/j.uclim.2020.100597 

Meier, F., Fenner, D., Grassmann, T., Otto, M., & Scherer, D. (2017). Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Climate, 19, 170–191. https://doi.org/10.1016/j.uclim.2017.01.006 

Lussana, C., Uboldi, F., & Salvati, M. R. (2010). A spatial consistency test for surface observations from mesoscale meteorological networks. Quarterly Journal of the Royal Meteorological Society, 136(649), 1075–1088. https://doi.org/10.1002/qj.622 

Nipen, T. N., Seierstad, I. A., Lussana, C., Kristiansen, J., & Hov, Ø. (2020). Adopting citizen observations in operational weather prediction. Bulletin of the American Meteorological Society, 101(1), E43–E57. https://doi.org/10.1175/BAMS-D-18-0237.1 

This list was last updated on 24/08/2021